Trends in Combating Image Spam E-mails
نویسندگان
چکیده
With the rapid adoption of Internet as an easy way to communicate, the amount of unsolicited e-mails, known as spam e-mails, has been growing rapidly. The major problem of spam e-mails is the loss of productivity and a drain on IT resources. Today, we receive spam more rapidly than the legitimate e-mails. Initially, spam e-mails contained only textual messages which were easily detected by the text-based spam filters. To evade such detection, spammers came up with a new sophisticated technique called image spam. Image spam consists in embedding the advertisement text in images rather than in the body of the e-mail, yet the image contents are not detected by most spam filters. In this paper, we examine the motivations and the challenges in image spam filtering research, and we review the recent trends in combating image spam e-mails. The review indicates that spamming is a business model and spammers are becoming more sophisticated in their approach to adapt to all challenges, and hence, defeating the conventional spam filtering technologies. Therefore, image spam detection techniques should be scalable and adaptable to meet the future tactics of the spammers.
منابع مشابه
Reversing the effects of tokenisation attacks against content-based spam filters
Spam has become a major issue in computer security because it is a channel for threats such as computer viruses, worms and phishing. More than 85% of received e-mails are spam. Historical approaches to combating these messages, including simple techniques like sender blacklisting or the use of e-mail signatures, are no longer completely reliable. Many current solutions feature machine-learning ...
متن کاملImage spam filtering using textual and visual information
In this paper we focus on the so-called image spam, which consists in embedding the spam message into images attached to e-mails to circumvent statistical techniques based on the analysis of body text of e-mails (like the “bayesian filters”), and in applying content obscuring techniques to such images to make them unreadable by standard OCR systems without compromising human readability. We arg...
متن کاملWord sense disambiguation for spam filtering
Spam has become a major issue in computer security because it is a channel for threats such as computer viruses, worms, and phishing. More than 86% of received e-mails are spam. Historical approaches to combating these messages, including simple techniques such as sender blacklisting or the use of e-mail signatures, are no longer completely reliable. Many current solutions feature machine-learn...
متن کاملData Mining Challenges for Electronic Safety: The Case of Fraudulent Intent Detection in E-Mails
Online criminals have adapted traditional snail mail and door-to-door fraudulent schemes into electronic form. Increasingly, such schemes target an individual’s personal email, where they mingle among, and are masked by, honest communications. The targeting and conniving nature of these schemes are an infringement upon an individual’s personal privacy, as well as a threat to personal safety. In...
متن کاملFiltering Spam by Using Factors Hyperbolic Trees
Most of current Anti-spam techniques, like the Bayesian anti-spam algorithm, primarily use lexical matching for filtering unsolicited bulk E-mails (UBE) and unsolicited commercial E-mails (UCE). However, precision of spam filtering is usually low when the lexical matching algorithms are used in real dynamic environments. For example, an E-mail of refrigerator advertisements is useful for most f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1212.1763 شماره
صفحات -
تاریخ انتشار 2011